

U.S. Advanced Reactor Demonstrations & NRIC

ARPA-E Annual Fission Meeting
February 25, 2021
Ashley E. Finan, Ph.D., NRIC director
ashley.finan@inl.gov

U.S. Advanced Reactors

Dozens of companies

 Sizes range from ~1MWe to ~1000MWe

 Variety of coolants (gas, sodium, salt, lead, water, etc.)

• Private investment

Motivation

• Clean, reliable, increased efficiency

 Potential for improved nuclear resource utilization and reduced nuclear waste

Diverse markets

NE Advanced Reactor Development - Mission & Objectives

Mission: Support the development and commercialization of innovative concepts including microreactor, fast reactor, molten salt reactor (MSR), and high temperature gas-cooled reactor (HTGR) technologies through national laboratory-led R&D, university research programs, and cost-shared private-public industry partnerships.

Objectives:

- Conduct focused research and development to reduce technical barriers to deployment of advanced nuclear energy systems
- Develop technologies that can enable new concepts and designs to achieve enhanced affordability, safety, sustainability and flexibility of use
- Sustain technical expertise and capabilities within national laboratories and universities to perform needed research
- Engage with Standards Developing Organizations (SDO's) to address gaps in codes and standards to support advanced reactor designs
- Collaborate with industry and Nuclear Regulatory Commission (NRC) to identify and conduct essential research to reduce technical and regulatory risk associated with advanced reactor technologies

NE Advanced Reactor Development R&D Campaigns

- Fast Reactor Technologies
 - Demonstrate feasibility of advanced systems and component technologies
 - Methods and code validation to support design and licensing
 - · Qualification of legacy metallic fast reactor fuel performance data
- Gas Reactor Technologies
 - Advanced alloy and graphite materials qualification
 - · Scaled integral experiments to support design and licensing
 - TRISO-coated particle fuel development and qualification
- Molten Salt Reactor Technologies
 - Investigate fundamental salt properties
 - Materials, models, fuels and technologies for salt-cooled and salt-fueled reactors
- Microreactors
 - Non-nuclear and nuclear integrated system testing supporting commercial demonstrations and end-user applications
 - Maturation of innovative components and semi-autonomous operating regimes

Other NE Programs Supporting Advanced Reactor Development

- Advanced Reactor Demonstration Program (ARDP)
 - Major cost-shared awards to construct and demonstrate two concepts in 5-7 years
 - Other cost-shared awards supporting development of emerging innovative concepts
- National Reactor Innovation Center (NRIC)
 - Supporting domestic advanced reactor demonstrations by establishing innovative testing infrastructure, performing siting analyses, and conducting stakeholder outreach
- Advanced Reactor Regulatory
 - Crosscutting non-LWR licensing framework activities
 - Close collaboration with campaigns, industry stakeholders, and NRC
- Nuclear Cybersecurity
 - Developing methods and technologies for cost-effective, cyber-secure digital instrumentation, control, and communication for current and future nuclear plants
- Advanced Reactor Safeguards
 - Developing optimized methods and technologies for advanced reactors to meet domestic materials accountancy and physical protection requirements
- Integrated Energy Systems
 - Developing tools and technologies to support the demonstration and commercialization of a broad range of non-electric applications for current and future nuclear plants

DOE Fuel Cycle Programs Supporting Advanced Reactor Development

- Mission: to enable innovation and the implementation of advanced technologies to optimize U.S. nuclear energy systems and to support U.S. industry opportunities for global deployment
- Shifting emphasis towards balanced portfolio to support Advanced Reactor Demonstration and Deployment and Innovative Fuel Cycle R&D for the future
- Versatile Test Reactor: An essential domestic capability to support the development of innovative fuels, materials and technologies
- Fuel for Advanced Reactors: Metal, carbides, nitrides, and dissolved/liquid fuel concepts
- Recycling Technologies: To sustain options for improved fuel utilization and higher performing waste forms
- Material Protection, Accounting and Control Technologies (MPACT): To improve fuel cycle efficiency and effectiveness in accountancy and proliferation resistance
- Systems Analysis: To improve fuel cycle efficiency and effectiveness in accountancy and proliferation resistance

Advanced Reactor Demonstration Program

- Objectives:
 - Develop, construct, and demonstrate several advanced reactors with beneficial capabilities
 - Support diversity of advanced designs
 - Stimulate private sector companies/supply chains
- Funding pathways aligned with varied maturity levels:
 - Advanced Reactor Demonstration (Demos) awards
 - Risk Reduction for Future Demonstration (Risk Reduction) awards
 - Advanced Reactor Concepts-20 (ARC-20) awards

Risk Reduction

Demonstration

Concept Development

Demonstration Pathway Selected Technologies

- TerraPower LLC Natrium Reactor
 - SFR that leverages decades of fast reactor and metallic fuel development
 - High temperature reactor coupled with thermal energy storage for flexible electricity output
 - · New metal fuel fabrication facility
 - Visit: https://natriumpower.com/
- X-energy Xe-100 reactor
 - HTGR that leverages decades of reactor and robust TRISO fuel form development
 - Provides flexible electricity output and process heat for a wide range of industrial heat applications
 - Commercial scale TRISO fuel fabrication facility
 - Visit: https://x-energy.com/

Slide content courtesy of U.S. DOE-NE

Risk Reduction Pathway Selected Technologies

Prime Recipient	Commercial Target Reactor Type and Fuel	Risk Reduction Project Key Deliverables
Kairos Power. LLC	KP-FHR - 140 Mwe thermal spectrum fluoride salt-cooled MSR, TRISO annular pebble fuel	Design, construction and operation of Hermes reduced-scale test reactor (precursor to commercial-scale KP-FHR)
Westinghouse	eVinci - 4.5 MWe heat pipe- cooled microreactor, TRISO UCO compact HALEU fuel	Technical risk reduction for moderator design, wick manufacturing, refueling and licensing.
вwхт	BANR - 50 MWt transportable microreactor HTGR with UN TRISO	Maturation of technology, including the development of UN TRISO fuel, to improve the commercial viability of BANR
Holtec	SMR-160 - 160 MWe LW-cooled natural circulation PWR	Early stage design, engineering, and licensing activities for the SMR-160.
Southern Company	Molten Chloride Fast Reactor – 180 MWt pool-type MSR fast reactor with liquid salt fuel	Design, construction and operation of Molten Chloride Reactor Experiment (MCRE)

ARC-20 Selected Technologies

Prime Applicant	Commercial Target Reactor Type	ARC-20 Project Key Deliverables
Advanced Reactor Concepts	ARC-100 100 MWe pool type sodium-cooled fast reactor	Conceptual and preliminary design of a seismically isolated advanced sodium-cooled reactor facility
General Atomics	GA-EMS 50 MWe gas-cooled fast modular reactor	Conceptual design of the GA-EMS 50 MWe FMR, increase TRL on systems and components, develop prelim. cost estimates
MIT	Modular Integrated Gas- cooled High Temperature Reactor (MIGHTR)	Conceptual design for MIGHTR and support for future commercialization as a safe and cost-competitive HTGR concept

- Demonstration Resource Network
 - Test beds & Demonstration Sites
 - Experimental & Fuel Facilities
 - Irradiation & Characterization
 - Component testing (sodium, helium, molten salt, lead, etc.)

- Regulatory Risk Reduction
- Virtual Test Bed
- NRIC Resource Team

Delivering Successful Outcomes

- Coordination & Collaboration
- Digital Engineering
- Advanced Construction Technology
- Integrated Energy Systems
- MARVEL
- Construction project management

MARVEL: Microreactor Applications Research, Validation and Evaluation Project

- 100 kWth/20 kWe microreactor
- Experience base for NRIC
 - Rapid demonstration at national lab
 - NEPA evaluations
 - Operator readiness and training
 - Safety basis
 - Engineering, design, assembly

Site: TREAT Storage Pit (8'x12'x10') and TREAT control room

Control Room

NRIC is a
National
Program and
Central
Integrator for
Partners and
Collaborators

